
Contents lists available at ScienceDirect

Computers & Geosciences

journal homepage: www.elsevier.com/locate/cageo

Spatial coding-based approach for partitioning big spatial data in Hadoop

Xiaochuang Yaoa, Mohamed F. Mokbelb, Louai Alarabib, Ahmed Eldawyc, Jianyu Yanga,
Wenju Yund, Lin Lia, Sijing Yee, Dehai Zhua,⁎

a College of Information and Electrical Engineering, China Agricultural University, Beijing 100083 China
b Department of Computer Science and Engineering, University of Minnesota, MN 55455 USA
c Department of Computer Science and Engineering, University of California Riverside, CA 92521 USA
d Land Consolidation and Rehabilitation Center, Ministry of Land and Resources, Beijing 100035 China
e Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, Beijing 100094 China

A R T I C L E I N F O

Keywords:
Spatial coding-based approach
Big spatial data
Spatial data partitioning
Hadoop

A B S T R A C T

Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial
data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a
significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To
tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop.
This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing
information set (SIS), including spatial code, size, count and other information. SIS was then employed to build
spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster
finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the
same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented
approach with a case study in this paper is compared against random sampling based partitioning, with three
measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance.
The experimental results show that our method based on spatial coding technique can improve the query
performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this
approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.

1. Introduction

In the era of big data, it has been evolved from a data scarce to a
data rich or big data environment in many fields of science (Kitchin,
2014; Miller and Goodchild, 2014), which has caused a number of
application systems to employe distributed processing and parallel
computing frameworks. Hadoop is one such open-source framework,
which has been around since 2007 and proven as an efficient frame-
work for big data analysis in many fields, such as, machine learning
(Low et al., 2012), bioinformatics (Gaggero et al., 2008), and graph
processing (Avery, 2011).

Unfortunately, for big spatial data, Hadoop is unreliable and inefficient
as it is designed ignoring characteristics of spatial dataset essentially
(Eldawy and Mokbel, 2013). For example, Hadoop employs default
HashPartition (Liu, 2013) to split big data into many child blocks with
a fixed block size, which can make good data balance and reduce data
skew in Hadoop distributed file system (HDFS). However, as Fig. 1(a)
shows, this method will disrupt spatial distribution characteristics be-
tween neighbouring objects, which is not beneficial to spatial data

processing. To solve this problem, some Hadoop based systems, such as
Hadoop-GIS (Aji et al., 2013), and SpatialHadoop (Eldawy and Mokbel,
2015) have been developed. So far, SpatialHadoop (Eldawy et al., 2015),
the most advanced distributed GIS system of them, employs space
partitioning (grid and quad tree), data partitioning (STR, STR+, and K-
d tree), and space filling curve partitioning (z-curve and Hilbert curve) to
make up for the drawback of defaulted partition method in Hadoop. Based
on these spatial data partitioning techniques, big spatial data can be
grouped into different partitions simply with their spacial locations.
However, due to the unevenly distribution of spatial data and varying
volume of spatial objects, as shown in Fig. 1(b), it is likely to cause some
thin or oversized data blocks to handle with MapReduce job, as well as
high data skew in HDFS.

Moreover, sampling (Eldawy et al., 2015; Aly et al., 2015) is adopted
to make a spatial data partitioning schedule for big spatial data. Based on
sampling, it can reduce the tasks time and improve efficiency without
scanning the entire dataset expensively (Aly et al., 2015). However, the
sampling dataset is controlled and affected by sampling ratio and
sampling method (Minasny et al., 2007). It is also quite possibly that

http://dx.doi.org/10.1016/j.cageo.2017.05.014
Received 15 December 2016; Received in revised form 13 April 2017; Accepted 28 May 2017

⁎ Corresponding author.

Computers & Geosciences 106 (2017) 60–67

Available online 30 May 2017
0098-3004/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00983004
http://www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2017.05.014
http://dx.doi.org/10.1016/j.cageo.2017.05.014
http://dx.doi.org/10.1016/j.cageo.2017.05.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2017.05.014&domain=pdf

some smaller or bigger partitions are produced (Vo et al., 2014). For
example, random sampling, which is an unbiased probability method,
totally ignores the spatial properties of the original dataset. In addition,
due to the randomness of sampling dataset, it cannot guarantee every time
we can get the same data partitioning scheme with fixed sampling ratio
and the samemethod. Although spatial sampling can solve these problems
with remaining spatial similarity, there still exists the data skew problem
as shown in Fig. 1(b).

A good spatial data partition (SDP) strategy should make sure both
optimal performance of spatial operation and data balance in the cluster
(Wei et al., 2015). This paper presents a spatial coding-based approach
(SCA) for partitioning big spatial data efficiently in Hadoop. The method
stands for three main steps for partitioning big spatial data. Firstly, we
compress the whole dataset, based on spatial coding matrix (SCM), into a
sensing information set (SIS), including spatial code, size, count and other
information. In this step, users can adopt different spatial codes, such as
Hilbert code, Grid code or others. Secondly, we employ SIS to build a spatial
partitioning matrix (SPM), which takes the spatial code and block size in
HDFS into consideration, and it will compute the partition id for all spatial
objects. Finally, the corresponding spatial coding-based data partition will be
executed. In addition to running this method as a standalone program, it is
also integrated with SpatialHadoop (Eldawy et al., 2015), a scalable
MapReduce based framework.

2. Background

2.1. Spatial coding

Spatial coding, which is used for indexing and clustering geographic
objects, is a specific implementation method of spatial data structure in a
standard database (van Oosterom and Vijlbrief, 1996). By spatial coding, as
Fig. 2 shows, each spatial object will be encoded with unique order code to
manage (Abel and Smith, 1983; Bajerski, 2008; Bajerski and Kozielski,
2009). Aside from the fact that spatial coding improves the overall manage-
ability of spatial datasets, it also improves spatial data processing in two
ways. Firstly, spatial coding can make the spatial data more suitable for
computer processing efficiency in one-dimension. Secondly, spatial data will
be compressed mostly without loss of spatial location and distribution,
avoiding the cost of large computing.

Spatial coding is widely applied in GIS, especially for spatial index
(Hadjieleftheriou et al., 2005), such as grid, quad tree and Hilbert-R tree. For
distributed and parallel GIS systems, the spatial coding is frequently used for
spatial data partitioning. However, to the best of our knowledge, existing
methods (Eldawy et al., 2015; Vo et al., 2014) just takemore consideration of
spatial locations, not other spatial properties based on spatial coding, such as
the size of spatial objects, count and so on, which are highly beneficial for
data balance in HDFS.

2.2. Spatial data partitioning in Hadoop

Data partitioning plays an powerful role in distributed storage and
parallel computing for big data (Scheuermann et al., 1998). Based on
data partitioning, big data can be divided into relatively small and
independent child blocks, which is a basic and powerful mechanism for
improving efficiency of data storage and management systems. In
addition to this, the idea, “divide and conquer” from data partitioning
also can improve data processing and computing. For example, if the
data partitioning is performed effectively, it just needs to scan a few
partitions instead of whole dataset in data retrieval or query operation.

Spatial data partitioning (SDP), because of the skew distribution of
spatial data (Wei et al., 2015) and varying volume of spatial objects, is
significantly differentiated from the database management system (DBMS),
which simply adopts horizontal and vertical partitioning techniques (Agrawal
et al., 2004). Existing systems (Aji et al., 2013; Eldawy et al., 2015) employ
many spatial partitioning methods to bridge this gap. However, to make sure
both optimal performance of spatial operation and data balance in Hadoop
cluster, we should take into consideration all following points:

(1) Spatial Objects. Spatial objects are the smallest unit of spatial data
partitioning. Therefore, in the division process, any spatial object
should be not split.

(2) Spatial Location. Usually, the geometric approximation, such as
center, minimum bounding rectangle (MBR), convex hull, etc., are
used to represent the complete two-dimensional geometry
(Polyline and Polygon).

(3) Spatial Distribution. Spatial objects always tend to be spatially
correlated and skew distribution. Therefore, spatially adjacent objects
should be partitioned into the same blocks as much as possible.

(4) Object Volume. Object volume is to describe the size by bytes in
physical storage level. This is an extremely important factor for
data balance, yet, it is almost ignored in existing spatial data
partitioning methods.

(5) Block Size. Block Size in HDFS is an another standard for data
partitioning, which determines whether the data block will be
subdivided or merged.

3. Methodologies

3.1. Spatial coding-based approach

In this paper, we use spatial coding-based approach (SCA) instead
of sampling to make the data partitioning schedule. As Fig. 3 shows,
the original dataset will be compressed with spatial code (van
Oosterom and Vijlbrief, 1996). We define a dataset having the same
spatial code as one spatial coded block. In this coded block, we will

Fig. 1. The blocks based on Hadoop HashPartition (a) and spatial data partition (b).

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

61

collect and sense spatial properties with location and code, which is
good for the spatial data partitioning and makes sure the spatial objects
are neighbors in the same coded block. We also will gather and
compress other informations, such as size and count, which are benefit
to the data balance in HDFS. By considering all influence factors in
Section 2.2, the steps for SCA in this paper are as follows:

(1) Computing spatial location. Here, we use the point as spatial
location. For the two-dimensional geometry, such as polyline and
polygon, we will use their center points instead of the spatial
objects themselves.

(2) Defining spatial coding matrix (SCM). Given a big spatial data, we
divide the space into grid cells with spatial coding. We define the
spatial coding values as a spatial coding matrix (SCM), say A, and
define grid cells as spatial coded blocks, as Fig. 3 shows. According
to spatial code, we can quickly identify the unique order code for
each spatial object in the dataset.

(3) Computing sensing information set (SIS). For each spatial coded
block in SCM, it will be compressed spatially to get a correspond-
ing sensing information set (SIS). As Fig. 3 shows, the SIS will be
contained with spatial code, spatial location, sum size and count of
the spatial coded blocks and others. SIS are the final results after
compressing the whole big spatial data.

Here, for the larger spatial coded blocks than default size, we
also need to collect a sub-split set, which is used to divide the large

coded blocks again. As Fig. 4 shows, if the coded blocks like (a),
firstly, we will compute its average sizeV , then order the objects in
this block by x coordinates, finally, get a x collections,
x x x x{ , , , ⋯…, }t0 1 2 , according to a certain interval x, and

x = BlockSize
V

. If the coded blocks like (b), y coordinates will be
replaced.

(4) Computing spatial partitioning matrix (SPM). We use the SIS to
estimate and build spatial partitioning scheme, namely, spatial
partitioning matrix (SPM). In this step, as the Fig. 5 shows, we
need to compare the size of the spatial coded block with the fixed
block size in HDFS. If the size is smaller, the coded block will have
the same id number with its neighbouring coded blocks, until their
sum size is similar to the fixed block size in HDFS. Otherwise, it
will be sub-split into more blocks according to the sub-split set in
sensing information set (SIS), and the remaining small fragments
also will be handled with neighbouring blocks.

3.2. SCA based data partitioning

On the basic of spatial coding-based approach (SCA), we can get the
spatial partitioning matrix (SPM) for the whole big spatial data. Next,
we just do the spatial data partitioning as the following two steps:

(1) Spatial data partitioning. SPM is the data partitioning scheme.
Here, we traverse each data record and find its corresponding

Fig. 2. Spatial coding based on Peano (a) and Hilbert (b).

Fig. 3. Sensing information set (SIS) based on SCA.

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

62

block id for every spatial object by matching the spatial code, and
then write the object into the data block in HDFS.

(2) Allocating the data blocks. In the SPM, there is the block id for
every coded block with spatial code, therefore, it is very easy to
finish this step for the whole spatial data with MapReduce
efficiently.

3.3. Architecture of spatial partitioning based on SCA

In this section, we present the architecture of spatial partitioning
based on spatial coding-based approach (SCA). Fig. 6 summarizes the
six steps, which can be done by two MapReduce jobs in Section 3.4.
Compared to the sampling based methods, our approach takes full
advantage of spatial coding in the 2 step to collect basic information.
Based on the spatial coding matrix (SCM), in the 3 step, we give full
consideration to spatial relationship of adjacent objects, the size of
spatial object and count of spatial coded blocks to make a better
schedule for data partitioning. In the 4 step, we will get a data
partitioning schedule and in the 5 and 6 step, big spatial data will be
partitioned into data blocks and distributed into nodes in the Hadoop
cluster spatially.

3.4. Case study: HCA for partitioning big spatial data

In this paper, the Hilbert coding-based approach (HCA) is devel-
oped for spatial data partitioning over MapReduce. Hilbert curve is a
classic space-filling curve, constructed by the German mathematician
Hilbert (Hilbert et al., 1981). Due to its excellent spatial clustering
performance for the two-dimensional objects (Abel and Mark, 1990),
Hilbert spatial-filling curve is commonly used in spatial data proces-

sing. In Table 1, we define some symbols for the pseudo codes in
details.

Based on above symbols, our algorithm can be implemented with
two MapReduce jobs. One will realize the first three steps in Fig. 6. And
the rest steps will be achieved by the second MapReduce job. According
to the structure of Hilbert curve, n order Hilbert curve will have 2 × 2n n

grid cells. Here, we suggest the value of initial order ⎡⎢ ⎤⎥M = log Volume
BlockSize0 2 .

In the first MapReduce algorithm, as Table 2 shows, map phase will
get the spatial basic information about every object. And reduce phase
will compute the sensing information set (SIS) for every Hilbert coded
block. Meanwhile it will also get the sub-split set for the large Hilbert
coded blocks. Firstly, we calculate the average volume of objects V ,

according to the formula: V =
size

t
∑i

t
i=0 . Then, all spatial objects in this

block will be ordered by X or Y coordinates as Fig. 4 shows. We can get
a certain interval number by this formula: x = BlockSize

V . Based on x, we
can get a series of X (or Y) coordinates set, which is further used to split
the large Hilbert coded blocks again.

In the second MapReduce algorithm, as Table 3 shows, map phase
will compute the spatial partitioning matrix (SPM), and reduce phase
will partition the full dataset and distribute all the blocks into nodes in
the cluster. In the first phase, we use the sensing information set (SIS)
to calculate the data block id for every Hilbert coded block, by merging
the small blocks and sub-split the large one with a threshold ρ. Next,
according to SPM, the whole big spatial data will be partitioned
spatially, and neighbouring objects will be wrote into one block.
Finally, all of the blocks will be distributed into nodes in the cluster
spatially.

4. Evaluation and discussion

In this section, we present the detailed experiments and results with
five real spatial datasets in Table 4. And the Hilbert coding-based
approach in this paper is compared against random sampling based
partitioning, with three measurement standards, namely, the spatial
index quality, data skew in Hadoop distributed file system (HDFS), and
query performance.

4.1. Experimental design

Hadoop cluster: we used a hadoop cluster including 8 computer
nodes to evaluate the effectiveness and efficiency of our proposed
approach. Each PC node is equipped with 4*16 GB RDIMM and runs

Fig. 4. Sub-split set for bigger spatial coded blocks.

Fig. 5. Spatial partitioning matrix (SPM) based on SCA.

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

63

the Ubuntu 14.0 operating system. We adopt Hadoop 1.2.1 and the
default block size in HDFS is 64 MB.

Spatial Dataset: we use five real spatial datasets in our experiments.
As shown in Table 4, the size is form 2.9 GB to 92.5 GB.

4.2. Results and discussion

4.2.1. Spatial index quality
Spatial data partitioning is powerful mechanism for improving

efficiency of spatial index directly. Here, the R-tree performance quality

Fig. 6. The architecture of spatial partitioning based on SCA.

Table 1
The symbols for HCA based spatial partitioning over MapReduce.

Symbols Definition

Volume Size of big spatial data
M0 Initial order number of Hilbert curve

V Average volume of objects in the same Hilbert coded block

x Certain interval number for sub-split set
size Size of spatial object
t Number of objects in one Hilbert coded block
i Order position of spatial object in sup-split set
BlockSize Size of fixed blocks in HDFS
ρ ρ ρ, ,min max a threshold for the blocksize in HDFS

N Number of nodes in cluster

Table 2
The first MapReduce algorithm.

First MapReduce Algorithm: Hilbert coding-based approach (HCA)

1 Input: big spatial data D
2 Start
3 // Map Phase
4 // Get the spatial basic information about every object
5 For (shape: shapes)
6 {
7 cPoint=shape.getCenterPoint(); // Get center point
8 size=shape.getSize(); //Get size
9 hCode=HilbertCode.getOrder(cPoint); // Get Hilbert code
10 }
11 // Reduce Phase
12 // Computing sensing information set (SIS) for every Hilbert coded block
13 For (hCode: hCodes)
14 {
15 sumSize size= ∑i

t
i=0 //Get the sum size of every Hilbert coded

block
16 }
17 if(ρsumSize > BlockSize* max)

18 subSplitSet=hcode.getSubSplit(); //Get sub-split set for large
coded block

19 else
20 subPartitionSet=0;
21 End

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

64

is employed to measure the data partition results (Eldawy et al., 2015).
For the R-tree performance quality, referring two main parameters
(Cary et al., 2009), namely, Area(T) and Overlap(T). Minimizing both
Area(T) and Overlap(T) is known to improve the R-tree performance
quality, because they increase path pruning abilities of R-tree naviga-
tion algorithms (Beckmann et al., 1990).

Figs. 7 and8 show separately Area(T) and Overlap(T) comparison
for real datasets based on random sampling and Hilbert coding-based
approach (HCA).

According to the results, it can be found that HCA method for
spatial data partitioning presents a better performance than random
sampling method in both Area(T) and Overlap(T), which means HCA
gives a better schedule for big spatial data. It is mainly due to that
spatial coding-based approach is taking the spatial distribution char-
acteristics of the original datasets into consideration when it is making
a data portioning schedule, comparing to the random sampling. And in
the partitioning step, it puts the neighbouring objects into one data
block as much as possible according to their spatial codes.

4.2.2. Data skew in HDFS
For the data skew in Hadoop distributed file system (HDFS), we

compute the statistical information, such as max/min/average/stan-
dard deviation and coefficient of variation, of data blocks in HDFS. In
this paper, the standard deviation (SD) and coefficient of variation (CV)
are adopted to measure the data block skewness across partitions in
HDFS. Higher SD indicates the data values have a wider range and
smaller CV implies better load balancing or data skew in HDFS.

Table 5 shows the statistical results of data blocks in HDFS for five
real datasets based on random sampling and Hilbert coding-based
approach (HCA). From the statistical results, we can find random
sampling will lead to heavily data skew of data blocks in HDFS. For the
max size of the data blocks, random is about twice as large as HCA, and
for the SD, the random is about 5 times to HCA. All CVs based on the
HCA for the five real datasets are smaller than random sampling. There
are two reasons that make HCA as a good data balance in this paper.

Table 3
The second MapReduce algorithm.

Second MapReduce algorithm: data partitioning

1 Input: big spatial data D
2 //Start
3 //Map Phase
4 //Computing spatial partitioning matrix (SPM)
5 For (hCode: hCodes)
6 {
7 //Merging small Hilbert coded blocks with neighbors
8 if (subPartitionSet==0)
9 {
10 do{
11 mergerSize=sumSize + sumSize. Next; //Merging

size
12 next.blockId=blockId; //Set the same block id for

mergered bloks
13 }while (sumSize. Next & &

ρmergerSize < BlockSize* min)

14 }
15 //Sub-split large Hilbert coded blocks
16 else{
17 blockId=blockId + i;
18 if (ρlast. subSplit < min)

19 blockId=blockId + 1; //Merging the remaining
small fragment

20 }
21 }
22 //Reduce Phase
23 //Spatial partitioning and blocks distribution
24 For (shape: shapes)
25 {
26 cPoint=shape.getCenterPoint(); //Get center point
27 hCode=HilbertCode.getOrder(cPoint); //Get Hilbert code
28 blockId=SPM.getBlockId(hcode); //Get the blockId in HDFS for

each spatial object
29 write(blockId, shape); //Writing the shape into data blocks
30 }
31 //End

Table 4
The datasets in experiments.

Name Size Records Average record size Symbol

World counties 2.9 GB 255 K 11.9 kb D0
Lakes 9.3 GB 10 M 999 bytes D1
Roads 25 GB 109 M 234 bytes D2
All ways 59.6 GB 164 M 390 bytes D3
All objects 92.5 GB 263 M 378 bytes D4

Fig. 7. The area(T) comparison for five real datasets based on random and HCA.

Fig. 8. The Overlap(T) comparison for five real datasets based on random and HCA.

Table 5
The statistical results of data blocks in HDFS based on random and HCA.

Dataset Method Max/mb Min/mb Avg/mb SD CV

D0 Random 227.030 2.177 52.019 49.966 0.961
HCA 61.736 35.230 51.106 3.094 0.061

D1 Random 119.582 16.737 53.247 22.805 0.428
HCA 68.492 16.347 54.135 4.015 0.074

D2 Random 166.360 22.667 53.016 17.012 0.321
HCA 87.031 27.060 59.290 10.003 0.169

D3 Random 144.315 19.359 53.172 20.974 0.394
HCA 106.680 33.835 66.482 9.902 0.149

D4 Random 247.110 12.854 53.167 21.619 0.407
HCA 101.004 48.123 64.168 8.527 0.133

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

65

One is that we take more information, such as size, count, etc., about
the original dataset into data partitioning schedule. The other one is we
take the default block size in HDFS into consideration when the dataset
is divided. Based on these, it can make sure the size of the data block is
as close as possible to the default size in HDFS.

4.2.3. Query performance
Based on the R-tree, we perform range query to test the query

performance of the partitions. In each experiment, to avoid random-
ness of single range query, we measure the query time of the cluster to
answer a batch of queries of jobs by generating some [1*1] grids
randomly. And we also test the range query time for the biggest dataset
in different number of nodes.

Fig. 9 shows the query performance of the contrast between
different job numbers for four real datasets based on random sampling
and HCA. In this test, 8 data nodes are used and the job number is from
100 to 500. From the results, we can find that the range query time is
increasing with the increase of the number of job tasks. Although we
are not able to compare the difference between different datasets
because of their spatial distribution, it can be shown HCA based spatial
partition is better than random sampling for all datasets in this paper.

In the second test, we choose the largest dataset, all objects with
92.5 GB, and submit 100–500 job tasks based on 2–8 nodes. As a
result, the overall execution time on various numbers of job tasks and
nodes are shown in Fig. 10. For the same number of job tasks, the
range query time will be shorter and shorter with the increase of cluster
nodes. It is clearly shown that the results of HCA are still better, and
have advantages than random sampling for all datasets.

The improvement of the query performance of the spatial data is
due to two reasons in this paper. The first is that the neighbouring
spatial objects are split into the same blocks which is exceedingly
conducive to spatial processing. The second is the data blocks
distribution in HDFS is more balanced, which can avoid time consum-
ing for some partitions containing a lot of spatial objects. Based on
these factors, such as spatial objects, location, and others, all of them
are fully considered when it makes the spatial data partitioning
schedule in spatial coding-based approach (SCA) for partitioning,
therefore, we can conclude that our proposed algorithm has an
excellent query performance for big spatial data.

5. Related work

Distributed frameworks and parallel computing provide an ideal
and practical solution for processing big spatial data (Hawick et al.,
2003). However, spatial dataset parallelism, namely, spatial data

partitioning (SDP), is particularly challenging for both optimal perfor-
mance of spatial operation and data balance in the cluster. Spatial
dataset can be partitioned into child groups based on their location
(latitude and/or longitude), spatial grid cells (Ma and Zhang, 2007), or
space-filling curves (Hungershöfer and Wierum, 2002; Meng et al.,
2007). These methods are able to simply and quickly partition big
spatial data spatially, however, they give no consideration to data
balance in cluster. Furthermore, early spatial data partitioning algo-
rithms are to simply divide large dataset into different child groups,
which are then processed by different processors (Ye et al., 2011).
Despite they can achieve the preliminary purpose of the data partition-
ing, when faced with the large dataset, there also have some challenges
as following. Firstly, almost all of the dataset will be involved in the
development of data partitioning strategy, without sampling or com-
pressing. Secondly, the dataset in one node is still a complete data
block, not blocks. Last but not least, the algorithms themselves are not
realized by parallelizing.

Spatial dataset, itself, tends to be heavily data skew, not only
because of the unevenly distribution of spatial dataset (Wei et al., 2015;
Zhao et al., 2016), but also due to their varying sizes. To address above
problems, in the past few years there has been significant progress in
the area of the parallel and distributed GIS systems, such as Eagle-eyed
elephant (Eltabakh et al., 2013), SpatialHadoop (Eldawy and Mokbel,
2013), Hadoop-GIS (Aji et al., 2013) and Kangaroo (Aly et al., 2016).
However, to the best of our knowledge, the state-of-the-art parallel
algorithms have not solve the problems well. For instance, the Eagle-
eyed elephant was proposed to avoid accesses of data splits. But, it
considers only one-dimensional spatial data. SpatialHadoop (Eldawy
and Mokbel, 2015) provided more comprehensive and basic techniques
for partitioning big spatial data based on random sampling (Eldawy
et al., 2015). However, it can produce some oversized or thin blocks
due to over/under sampling. For the partitioning results, SATO (Vo
et al., 2014) in Hadoop-GIS system, adopted post re-partitioning to
optimize data balance. But, it has to re-scan the data to collect basic
statistics costly. AQWA (Aly et al., 2015) in Kangaroo system employs a
K-d tree based algorithm and balances workload by repartitioning
according to the queries. However, it considers only large data blocks
based spatial gird as a query operation is executed. Essentially, it also
has drawback in data balance.

6. Conclusions

Skew distribution of spatial dataset and varying volume of spatial
objects pose a big challenge for spatial data partitioning in distributed

Fig. 9. Query performance of the contrast between different job numbers. Fig. 10. Query performance of the contrast between different cluster sizes.

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

66

GIS systems. We presented a new approach, spatial coding-based
approach (SCA), to optimize spatial data partitioning in our research.
Based on our algorithm, the whole big spatial data was compressed into
a sensing information set (SIS), which took more information about
spatial dataset into consideration. And then SIS was employed to build
spatial partitioning matrix (SPM), which was used to partition big
spatial data finally. In this paper, a study case, Hilbert coding-based
approach (HCA), was described in details over Mapreduce.

The performance of the HCA for partitioning big spatial data was
test with five different real datasets. And the approach was also
compared against the data partition algorithms based on random
sampling using SpatialHadoop. Rather than just sampling to make a
data partitioning schedule in most researches, we took more informa-
tion about the whole spatial dataset into consideration with spatial
coding. Based on the Hadoop cluster with unfixed nodes, we test
different real datasets and job tasks using three measurement stan-
dards, namely, the spatial index quality, data skew, and query
performance. Compared with the random sampling based method,
our approach based on spatial coding technique can improve the query
performance of big spatial data, as well as the data balance in HDFS.

Acknowledgment

The research was funded by ministry of land and resources industry
public welfare projects (No: 201511010-06).

References

Abel, D.J., Mark, D.M., 1990. A comparative analysis of some two-dimensional
orderings. Int. J. Geogr. Inf. Syst. 4, 21–31.

Abel, D.J., Smith, J.L., 1983. A data structure and algorithm based on a linear key for a
rectangle retrieval problem. Comput. Vision. Graph. Image Process. 24, 1–13.

Agrawal, S., Narasayya, V., Yang, B., 2004. Integrating vertical and horizontal
partitioning into automated physical database design, In: Proceedings of the 2004
ACM SIGMOD international conference on Management of data. ACM, Paris,
France, pp. 359–370.

Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J., 2013. Hadoop-GIS: A High
Performance Spatial Data Warehousing System over MapReduce. In: Proceedings of
the VLDB Endowment 6, pp.1009–1020.

Aly, A.M., Mahmood, A.R., Hassan, M.S., Aref, W.G., Ouzzani, M., Elmeleegy, H., Qadah,
T., 2015. AQWA: adaptive query workload aware partitioning of big spatial data. In:
Proceedings of the VLDB Endowment 8, pp. 2062–2073.

Aly, A.M., Elmeleegy, H., Qi, Y., Aref, W., 2016. Kangaroo: Workload-Aware Processing
of Range Data and Range Queries in Hadoop, In: Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. ACM, San Francisco,
California, USA, pp. 397–406.

Avery, C., 2011. Giraph: Large-scale graph processing infrastructure on Hadoop. In:
Proceedings of the Hadoop Summit. Santa Clara, 11.

Bajerski, P., Kozielski, S., 2009. Computational Model for Efficient Processing of Geofield
Queries, In: Proceedings of the International Conference on Man-Machine
Interactions, Kocierz, Poland, pp. 573–583.

Bajerski, P., 2008. Optimization of geofield queries, In: Proceedings of the International
Conference on Information Technology, pp. 1–4.

Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B., 1990. The R*-tree: an efficient

and robust access method for points and rectangles, In: Proceedings of the 1990
ACM SIGMOD international conference on Management of data. ACM, Atlantic City,
New Jersey, USA, pp. 322–331.

Cary, A., Sun, Z.G., Hristidis, V., Rishe, N., 2009. Experiences on processing spatial data
with MapReduce. In: Proceedings of the Scientific and Statistical Database
Management, 5566, pp. 302–319.

Eldawy, A., Mokbel, M.F., 2013. A demonstration of spatialhadoop: An efficient
MapReduce framework for spatial data. In: Proceedings of the VLDB Endowment 6,
pp. 1230–1233.

Eldawy, A., Mokbel, M.F., 2015. SpatialHadoop: A MapReduce framework for spatial
data, In: Proceedings of the 31st IEEE International Conference on Data
Engineering. IEEE Computer Society, Seoul, Korea, Republic of, pp. 1352–1363.

Eldawy, A., Alarabi, L., Mokbel, M.F., 2015. Spatial partitioning techniques in
SpatialHadoop. In: Proceedings of the VLDB Endowment 8, pp. 1602–1605.

Eltabakh, M.Y., Özcan, F., Sismanis, Y., Haas, P.J., Pirahesh, H., Vondrak, J., 2013.
Eagle-eyed elephant: split-oriented indexing in Hadoop, In: Proceedings of the 16th
International Conference on Extending Database Technology. ACM, Genoa, Italy, pp.
89–100.

Gaggero, M., Leo, S., Manca, S., Santoni, F., Schiaratura, O., Zanetti, G., CRS, E.,
Ricerche, S., 2008. Parallelizing bioinformatics applications with MapReduce. Cloud
Comput. Its Appl., 22–23.

Hadjieleftheriou, M., Hoel, E., Tsotras, V.J., 2005. SaIL: a spatial index library for
efficient application integration. GeoInformatica 9, 367–389.

Hawick, K.A., Coddington, P.D., James, H.A., 2003. Distributed frameworks and parallel
algorithms for processing large-scale geographic data. Parallel Comput. 29,
1297–1333.

Hilbert, D.W., Swift, D.M., Detling, J.K., Dyer, M.I., 1981. Relative growth rates and the
grazing optimization hypothesis. Oecologia 51, 14–18.

Hungershöfer, J., Wierum, J.-M., 2002. On the quality of partitions based on space-filling
curves, Computational ScienceICCS 2002. Springer, pp. 36–45.

Kitchin, R., 2014. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 1,
1–12.

Liu, L., 2013. Computing infrastructure for big data processing. Front. Comput. Sci. 7,
165–170.

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M., 2012.
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. In: Proceedings of the VLDB Endowment 5, pp. 716–727.

Ma, L., Zhang, X., 2007. A computing method for spatial accessibility based on grid
partition, Geoinformatics 2007: Geospatial Information Science.SPIE, Nanjing,
China pp. 675317–675326.

Meng, L., Huang, C., Zhao, C., Lin, Z., 2007. An improved Hilbert curve for parallel
spatial data partitioning. Geo-Spat. Inf. Sci. 10, 282–286.

Miller, H.J., Goodchild, M.F., 2014. Data-driven geography. GeoJournal 80, 449–461.
Minasny, B., McBratney, A.B., Walvoort, D.J.J., 2007. The variance quadtree algorithm:

Use for spatial sampling design. Comput. Geosci. 33, 383–392.
Scheuermann, P., Weikum, G., Zabback, P., 1998. Data partitioning and load balancing

in parallel disk systems. VLDB J. 7, 48–66.
van Oosterom, P., Vijlbrief, T., 1996. The spatial location code, In: Proceedings of the 7th

international symposium on spatial data handling, Delft, The Netherlands.
Vo, H., Aji, A., Wang, F., 2014. SATO: a spatial data partitioning framework for scalable

query processing, In: Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, Dallas, Texas,
pp. 545–548.

Wei, H., Du, Y., Liang, F., Zhou, C., Liu, Z., Yi, J., Xu, K., Wu, D., 2015. A k-d tree-based
algorithm to parallelize Kriging interpolation of big spatial data. Giscience Remote
Sens. 52, 40–57.

Ye, J., Chen, B., Chen, J., Fang, Y., Wu, L., 2011. A spatial data partition algorithm based
on statistical cluster, Geoinformatics, 2011 In: Proceedings of the 19th International
Conference on, pp. 1–6.

Zhao, L., Chen, L., Ranjan, R., Choo, K.-K.R., He, J., 2016. Geographical information
system parallelization for spatial big data processing: a review. Clust. Comput. 19,
139–152.

X. Yao et al. Computers & Geosciences 106 (2017) 60–67

67

http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref1
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref1
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref2
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref2
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref3
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref4
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref5
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref5
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref5
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref6
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref7
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref8
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref8
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref9
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref9
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref10
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref11
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref12
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref13
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref14
http://refhub.elsevier.com/S0098-3004(16)30820-2/sbref14

	Spatial coding-based approach for partitioning big spatial data in Hadoop
	Introduction
	Background
	Spatial coding
	Spatial data partitioning in Hadoop

	Methodologies
	Spatial coding-based approach
	SCA based data partitioning
	Architecture of spatial partitioning based on SCA
	Case study: HCA for partitioning big spatial data

	Evaluation and discussion
	Experimental design
	Results and discussion
	Spatial index quality
	Data skew in HDFS
	Query performance

	Related work
	Conclusions
	Acknowledgment
	References

